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Figure 1: Sudden appearance of a dense subgraph at 1=3.
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Figure 2: Overview of SpoTLIGHT
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Figure 3: A (K=3,p=0.5,¢=0.33)-SpoTLiGHT sketch v(G) of
a graph G with unit-weight edges. Each sketch dimension
vi(G) is the total weight of edges going from a random set
of sources S;{ and to a random set of destinations ‘D;:.
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‘normal’ instances in the SpoTL1GHT (sketch) space, we may now em-
sloy any oft-the-shelt data stream anomaly detector (e.g., |9, 20, 29])
ploy any , g

to carry out ANOMALYSCORE procedure call (line 5 of Alg. 1). These
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Attributed Network Encoder
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Inductive Anomaly Detection on Attributed Networks

An unsupervised framework

AEGIS trains a generative adversarial network (Ano-GAN)
to improve the model generalization ability on newly added
data. Specififically, the generator aims to generate
informative potential anomalies, while the discriminator
tries to learn a decision boundary that separates the
potential anomalies from the normal data.

FIGANA i 7 8 B4
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Figure 1: (a) The graph differentiative layer. (b) The proposed inductive anomaly detection framework AEGIS. Note that AEGIS 1s trained
with the partially observed network G, and can directly detect anomalies on the new network G’ in a feed-forward way. The yellow arrows
denote the training flow and the blue arrows denote the inference flow. Figure best viewed 1n color.
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Graph Differentiative Layer : GDN
—Pr4RfE
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where h(-1) ¢ RF h®) € RF denotes the input and

output representation of node i, respectively. ﬁ. "” ==

h“-l} - h(-f 1) .
7

i

is the feature difference between HDdt 1 and

j. W1, Wy € RF*¥ are two trainable weight matrices and o
is a nonlinear activation function. \; denotes the neighboring
nodes of node i. Here «;; 1s the attention coefficient between
node ¢ and node j, which can be expressed as:
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Graph Differentiative Layer: GDN R BIKHAE

Similarly, by extracting k*"-order neighbors of node 7 from
Ak = A-A... A, we can compute its k" -order node rep-
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Adversarial Graph Differentiation Networks

Training Network G = (A, X) (b)
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The denote the training flow and the blue arrows denote

the inference flflow. Figure best viewed in color.

The generator G effectively improves the capability of the discriminator
D to 1dentify normal data by generating informative potential anomalies.
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Adversarial Graph Differentiation Networks
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. Sample a negative example by using the corruption function: (X, A) ~ C(X, A).

. Obtain patch representations, h; for the input graph by passing it through the encoder:

H=E(X,A) = {hi,h,..., h ).

. Obtain patch representations, /i ; for the negative example by passing it through the encoder:

H=E(X,A) = {h1,ha,..., ha}.

. Summarize the input graph by passing its patch representations through the readout func-

tion: § = R(H).

. Update parameters of £, R and D by applying gradient descent to maximize Equation I]
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Transductive learning

Inductive learning on large graphs

GraphSAGE-GCN MP(X,A) = D7'AX® MP(X,A) =0 (XO'|MP(X,A))  &(X,A)=MP3;(MP,(MP;(X,A),A),A)

Hl — {T(MPI{X,A}}
H; = o (MPy(H; + XWg;p, A))
E(X,A) = o (MP3(Hz + H; + XWip, A))
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Corruption function

C preserves the original adjacency matrix (A = A), whereas the
corrupted features, X, are obtained by row-wise shufflfling of X.

< the same nodes as the original graph

located in different places in the graph

DGI i1s stable to other choices of corruption functions!!!
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Training details

> D ~~~~> - We use a simple averaging
of all the nodes’ features:

R(H) =0 (%ZE)

i=1
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Loss Function

D(h:,5) =0 (ﬂf"w;)
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GCN for content and structural features. At timestamp
t, we receive the snapshot G = (V' £) with its adjacency
matrix A’ and the output hidden state matrix H~! € R"x¢
of the framework at timestamp ¢ — 1. First, we propagate the
hidden state matrix with GCN,

Current’ = GCN;(H' 1), (1)

where Current’ represents current state of nodes combining
the current input with the long-term hidden state, and GCN,
denotes an L-layered GCN which is proposed in [Kipf and

Z{(}} :Ht—l :
ZW) =ReLU(AtZU-VWIE-D),
Current’ =ReLU (A'ZL~DW (1),

\
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GRU with attention to combine short-term and long-term
states. To catch the short-term pattern of nodes, we apply the
contextual attention-based model which is inspired by [Liu et
al., 2017] and proposed by [Cui et al., 2017]. In our frame-
work, we construct short state of local window as follow:
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aj, , = softmazx(e} ;) a}fl!?: cR® ()

= ShOI‘tE = (afz,.gci J;)T ShDI‘tE e Rd (8)
Brief  short; = CAB(h{™“;..;hi™")

Short! = CAB(H'™¥; ... H™!)
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Output Layer

H' = GRU(Current’, Short")

P! = o0(UpCurrent’ + W pShort’ + bp)

R’ = 0(UrCurrent’ + WxShort" + bp)

H' = tanh(U.Current’ + W_.(R" ® Short"))
H! = (1 — P!) ® Short’ + P! ® H
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Anomalous score computation for edges

For each edge (i, j, w), anomalous scores:

f@i,jyw)=w-o(B-(lacdh; +bOh,||5 —p) (16)
where h; and h; are the hidden state of the i-th and j-th node
respectively, and o(x) = Jrlr is the sigmoid function. a
and b are parameters to optimize in the output layer. 3 and
1 are the hyper-parameters in the score function. Note that

the single layer network used in this paper can be replaced by
other sophisticated networks.
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Negative Sampling

ple as an anomalous edge. Inspired by the method proposed
in [Wang et af , 2014], we define a Bernoulli distribution with

parameter EH for iamphnﬂ given a normal edge (i, 7), W

lelaCL ¢ with probability and replace j with pmhabll—

dit+d; +f
ity 5 + ¥ , Where d; and d; denote the degree of the i-th node

and the j-th node lLSpECIIVLl}‘.

Loss Function

L! = min Z Z

(1,5, w)€EE® (1,7 w)EE"
max{0,y + f(i, 7, w) — f(i’, ', w)}
2 2 2 2
Lreg =Y (IIWl[5+ [Wal[3 + [1Qnll3 + [Ir]I3
2 2 . 2 2 2
HIU |2 + [[Well2 + [bz|l2 + [[U[ 2 + [[Wr|[3
2 2 2 2 2
+[br|[2 +[|Ucllz + W[z + [la]lz + [[b]|2) (19)

L= 4 Mz
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A
payer
payee
vor @
accountHolder hasMembers
E
" i murderer
D
hasMembers eventOccursAt
H J
victim
transferMoneyFrom
@ dateOfEvent
F K
accountHolder
transferMoneyTo

Figure 1: A toy example of a heterogeneous criminal net-
work. Different colors on nodes indicate different types of
nodes. Edges are associated with different typed labels.

Figure 1 is a toy example of heterogeneous criminal network.

An exampled triple (A, payee, C) is used to represent the “payee”

) . ) payee
relation from entity A to C, i.e, A ——— C. Another exampled

triple (C, (murderer_l, Uictim> , G) is used to represent the indirect

murderer victim
LY

.G

relationships from entity C to G, i.e., C ¢
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Learn Behavior-aware Entity Embedding

Given a heterogeneous criminal network K = (&, ¢, R, 0, T ), along
with all triples of relation paths P = (h,p, t) € K, we aim at learn-
ing the embedding matrices E € R"Xd and P € R"*4 for all
entities and all relation paths, respectively, where n, is the num-
bers of entities and ny is the number of relation paths, and d is
the dimensionality of embedding vectors. Let xp, xp, and x; be the
index one-hot vectors for a head-relation-tail triple (h, p, t). Hence,
the embedding vectors for head entity h, relation path p, and tail
entity ¢t are h = xl;[ E,p= x;P, and t = x] E. To effectively learn

Scoring Function

t=hop. Hadamard product

and the learned tail embedding t. The scoring function is:

s(h,p,t) = tanh(t™ t),

ec—e *

where tanh(z) = =
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Behavior Penalty

T = de g(h) Degree based

or
Th = = Liew(n) P(i) log P(i) Entropy based

Loss Function

s(h.p, t) . s(h’,p,t")

Th TThe

!

Negative Sampling

i= ; Z Z +A Z 1013 —— L2 regularization

(h,p,t)eP (h',p, t' )P’

Instead of random negative sampling over all entities, we perform random sampling
over entities of each type, and ensure every entity type will be sampled.
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Heterogeneous Graph Construction

For our convenience, we can further extract |9| subgraphs

{Q[dJ 3 S(d})} each of which preserves all the vertices of
G. but ignores the edges containing devices that do not belong to

agraph G = (V, &) type d. This leads to |D| adjacency matrices {A'?)}. Note that the
heterogeneous graph representation {G(?)} lies in the same stor-
age complexity compared with original G because we only need to

FHIE: users, items store the sparse edges.

TItems K2R A5 65 Along with these graphs, we can further observe the activities
of each account. Assuming a N by p + |D| matrix X € RN-P*IP|,

g P AT 20K A 18] 5 (0, T) & 43 with each row x; denotes activities of vertex i if i is an account.

BpEt, itk P ERERNAT In practice, the activities of account i over a time period [0, T) can

AIRBAENFFE (p4E) be discretized into p time slots, where the value of each time slot

Y% %K one-hot i : (|D|4) denotes the count of the activities in this time slot. For vertices

correspond to devices, we just encode x; as one hot vector using
the last |D| coordinates.
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Feed Forward

Optimization

H® « o
for t=1,....T TREMZ& EE
1 | D]
H® g(x W+ == Y AD gDy,
D] d=1
N, BUE+L, -1
in LW, {V;},u)=- ) 1 - (u" h;
£~ s
where o denotes logistic function o(x) = 1 u € Rk, and

1+exp—x?
the loss £ sums over partially observed N, accounts with known

labels. Our algorithm works interatively in an Expectation Max-
imization style. In e-step, we compute the embeddings based on
current parameters W, {V;} as in Eq (6). In m-step, we optimize
those parameters in Eq (7) while fixing embedings.
l.e-step: ETEHZH, THH embedding;
2.m-step:[& ' eembedding, LS.



Heterogeneous Graph Neural Networks for Malicious Account Detection

With Attention

|D|
H® J(X W — > A . gDy,
b=

|

deD
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Users
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Items

—

Embedding I

. o > |_| Detection

> X

SI9S))

Items

Figure 1. Deep Structure Learning for Fraud Detection. Blue circles and
squares represent normal users and items. Yellow/Green ones represent
fraudsters and corresponding fraudulent items in one/another fraud block.
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Definition 1: (Interaction Information Graph) An interac-

tion information graph 1s a special form of a bipartite graph,
which is defined as G = (X, Y, E), where X = {z1, ..., &m }

represents m user nodes, Y = {y1, ..., yn} 1apleaenh n item Wy it 5 1Al
nodes and E = {e;; }?_1 ‘‘‘‘‘‘‘‘‘‘ " represents directed edges from B FEADL BE FE A
X to Y. If there exits an edge from z; to y;, e;; = 1. r Th sy
Otherwise, e;; = 0. Note that X and Y are two disjoint
sets.
Definition 2: (Similarity Metric) Given two different user ( |N:NN;|+1 IN;A N
nT AT . E iV
nodes r; and x; 1n the mteraction mformation graph, the ::ij i?}z 0 E 4
s il £ o — * - T Il = | [
similarity metric between them can be defined as sim;; = S = 4 N, N, +n |Vs N N[ = |N; U Nj|),
|N:MN; | e AT e . |N;NN;| o
[N.ON,[° where N, {E;J, £.1" & = 1} represents the __'Lm_uw | otherwise.

item nod:-: set dHHDlelEd with the user node x;

Suspicious user nodes inevitably associate with more of the same item nodes
so that the similarity between them is relatively higher, while the behaviors of
normal user nodes are independent, which leads to low similarity in general.
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DeepFD model
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[ Graph Structure i
Autoencoder '
DeepFD model - <
,,,,,,,,,,,,,,,,,,,,,,,, . Reconstructed D O . C_/ ﬁ
f Graph Structure 3 ‘OF‘ st ! Graph Structure !
s \umsncndcr i Parameter 5|_ ing i Autoencoder i (l} (1} l} \,',- Ef.‘ﬁ}l' 1 :
Reconstructed ) ) ) | "A:"h i | i r
Vector H i il i y 3 _— G_( 'I-i ":I -|" b } :
_ 1::;213:2?11' i i y(f} (Ii (f}y(f J.} + !} f}} f - 2 R_,_ ‘ O O CT> O O i i
! i 1 I : L DECGde{. sEm :
! i
! . : I
_— ke i | Reconstructed loss function: ! , .
| i’:\"::::::‘-‘ Kmm 000 :t,
inary Vector i ----------- q; _______ i : i - & ) 2 ..__.. _______________________ ;
wov [@O0O0E] /Y [Ce000e Limp= Y |16 — sill3 .?. 1
Users-Items | “c : | e 14 l IL.M |>| Item Ttem Er_“@,i"jﬁ I:J. Er‘ll.’.‘ﬂf_]E[‘ :
L et for et for [(— |
e _________:f-lf_lT_‘_l __________ ?Jse'rl ?JSE'I‘J __ i ‘ O O O O i
|
|
) _ !
Treats all elements of the input vector s; equally and the number of zero Hisiary Vecioe m O . Q u:
|

elements in s; 1s far more than that of non-zero elements, the auto-encoder

1s more likely to reconstruct zero elements.
Users-Items

setting larger weights to non-zero elements: Mapping
Tri | e A - A
B — Z| §; — 8,) © h, ||‘2 where @ is the Hadamard pl'qduct, S = IsniSendnls
H = {hi,ha,...;,hy,} and h; is the weight vector for the
input vector s;. For hy = {h;}7_4, if si5 = 0, hy; = 1;
((’ — 5)0 H| |2 otherwise, h;; = 3 > 1.

i . i . e e e e . S e e e e e S e

MR H#E Graphfil 7 &
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DeepFD model

Graph Structure Joint Optimiz: ,mn Graph Structure

For user node x; and user node x;, the distance measure

e Pﬁb' KEAI‘ZD“(EIZQJ of their vector representations is defined as follows:
Vector t : i i L { K } { K }
m : User Behavior i ('{; ﬁ‘! ; B | | (‘g | |‘2 (4)
Decras i | Preservation i
,,,,T, == ! A | _'_‘-._‘_‘-\_
| sim;; = exp(—A - dis;;)
Encoder

Smlllarl(\
\Iclrlc

where A > (. When the distance of the two user nodes i1s
close to O, the value of sum;; i1s close to 1, which means
[ (T ] Tiom 4 | Tim& | (im ) ["fem : (Tem2 ] ‘ that their vector representations are very qm‘ulal WhllL

L e T/Lms;,m s P )
o M) Useri ] { ers ] when the distance 1s large enough, the value of sim;; 1s
close to 0, which means that their vector representations are

quite different. In Section II, we have defined an empirical

1
| I I 1 P
- ' Vector | 4| || Z e
:ﬁ> i‘<|,j:| = .‘:?i’ﬂ — 8t;;| |-
_ aQC)Q? ! L_ Similarity | ™ M i i ‘r im | | ij t] | |2
'——5——-—————————.?: ———————————— i "»'llmlmZL.: f T bl 1,j=1
Encoder } i Difference] ! . i

K
1 (D11 £ (D11 s i
Lreg = 3 S AIWO -+ IO -+ 6O+ 15O])
I

LB S EI R AN T negative sampling
f= 'E'J"t':'{,'ﬂﬂ. + (:]f:'Cx-:'.-rr: 3 (‘:""{:T't’.ﬁq
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Figure 4. F-measure comparison for different fraud detection methods and visualization for embedding results (2 fraud blocks injected). Blue color
M—Zoom represents normal users, and other colors represent different fraud blocks.
F-measure: _Cl :345 F- mcasu&?ﬁzﬂ F-measure: 0.518 o F-mcra_sure: 0.942
o Lo R ek :
D-Cube
: : Ay
H 1 S (a) WalkFDl1 (b) WalkFD2 (c) LineFD (d) DeepFD
010 COpe Figure 5. F-measure comparison for different fraud detection methods and visualization for embedding results (3 fraud blocks injected). Blue color
represents normal users, and other colors represent different fraud blocks.
F-measure: 0.342 F-measuyre: 0.339 F-measure: 0.476 F-maasura: 0.940
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Figure 6. F-measure comparison for different fraud detection methods and visualization for embedding results (4 fraud blocks injected). Blue color
represents normal users, and other colors represent different fraud blocks.
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- G : i o

i

LINE+DBSACN )
(a) WalkFD1 (b) WalkFD2 (c) LineFD (d) DeepFD
Figure 7. F-measure comparison for different frand detection methods and visualization for embedding results (5 fraud blocks injected). Blue color

represents normal users, and other colors represent different fraud blocks.
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HAInt-LSTM
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HAInt-LSTM
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Learning Sequential Behavior Representations for Fraud Detection

Unsupervised Learning: In this framework, we detect
fraudsters based on unsupervised sequence prediction. At each
time step, we predict the caller’s next target. Since we assume
that normal users have some potential regularities inside their
behavioral sequences, thus their sequence would be more
easily predicted, and the loss value of learning model would be
very small. However, if a sequence belongs to a fraudster who
doesn’t have a stable social connection and always changes
targets, the loss value of model would rise. Specifically, the
loss function of this framework is as follows:

y, = o(Wihy +b), (11)
11

Ly=—==)_> lpn() +(1-yg)n(l-y), 12
' R

where y; is the true target of (f + 1)-th time step, y; is the
predicted target for (f + 1)-th time step. 7" is the maximum
sequence length, n 1s the total number of sequences.

Supervised Learning: In this framework, we assume that
there 1s a small set of ground truth data, then we can build
a classifier based on users’ consecutive behaviors to predict
their labels. We add a soft-max layer on the last sequence
representation, so that utilizing the recurrent neural network
as a classifier and give a possible label for this sequence. The
loss function of this framework is as follows:

y = o(Wrhy + br),

]' ! !
Ly=— ;[y In(y) +(1-y)In(l-y)], (14

(13)

where y is the true label of the sequence, 3 is the predicted
label of the sequence, 7" 1s the maximum sequence length, n
1s the total number of sequences.
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Networks
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The proposed NetWalk is flexible. It is
applicable on both directed and
undirected networks, either weighted
or not, to detect abnormal vertices and
edges in a network that may evolve
over time by dynamically inserting or
deleting vertices and edges.
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Networks

Network Walk

Definition 3.1 (Network Walk). For a given vertex v; € V in
a network G(&,V), its network walk set is defined as Qy, =
{(v1, 02, ...,91)| (vi,vi+1) € & A p(Vi, Vi+1) = Dz)l-,z;- }, which is

a collection of [-hop walks starting from vertex v;. The transition
probability p(v;, vi+1) from v; to vj+1 is proportional to the degree
D, v, of vertex v;. We call Q,, a network walk set starting from v,
and Q = {Qy},, ey as the union of all walks.
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Networks

Learning Network Representations Q| I
Z H_f(nl (X(I) (1) ‘2
=1 p=1
Formally, given a one-hot encoded network walk {xg) };:1, i= [
., |Q[, we want to learn the following representations in a n;- ]Ci'zqm Z Z Hf j(xu j(x[i;j}“z
11<p

layer autoencoder network,

J'lj o ”f 111 g .il".l.j' g - *' - - - g
f{T}(xg)) o U(W{T)Th{T}(xg)) L b, 1) Due to the sparsity of t-he input .dlld output vectors, we LOIl'.‘:.ldFjI'
a sparse auto-encoder with sparsity parameter p and penalize it
where — " " _ - with the Kullback-Leibler divergence [27],
R ) = Wz V(7D D) 4+ b7, @)
d d p g w5
A€ =
KL(pllp') = ) KL(pllp})) = D plog %= + (1= p)log —=—,  (5)
= = Pj 1= pj
j=1 j=1 / s
— _ oy S|l — () 3 Q| w1 (€) ¢ (F)
m= 3 Epr' =5 ”2 b | P = 1axi 2o zp=l J (x,")
=p.g= - |
1 =f | ‘ I s S [f”fn (i) ) u|2 Ylmi‘lf‘( ) 1o () :)r’
= | = Jow. ) lr e - | + L "D () - x{
— [ n n . P P iz
:_1 Encoding B | | " W(l]téfl.]" I w G E]rbf. i) B =1 1<p gl | 12 2 i |
f _jlj \ I__ :_. (ﬁ:i}j i Clique Embedding Loss Reconstruction Error
Network Walk i || || ' _fzi | 11 ny—-1 ny
Network Walk i H L] @ L] | | = ”
L (D x5 =1 —nﬂ| | | 50 e +p Z ZKL F’“P ) Z”w lﬁ” . (6)
2D "2 5 f;?” gl 2 £=1 Jj
1 Layer Sparsity Constraint Weight Decay
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Networks

Objective Function:

|{J| l
(=) x{1) " 4 ¥ n 2
Jw.m =y 3 | PO+ LY I -]
i=1 1=p, g=I i=1 p=1
Clique Embedding Loss Reconst 111_:[1011 Error
”I_ ‘1 ”I Ur‘j "
P Z 2 KL(pl8;”) + 3 2 Wl ©
J !‘=1
Sparsity Constraint Wf-‘igh:DL‘ cay
The loss function J(W, b) can also be written in a matrix form:
) - 2 where & = [f, £, ..., £, £ = 5 (x( )): L is the
J(W,b) = Z Te(FOLFOT) 4 g H‘H[-””(X} - X‘ i Laplacian matrix of the clique with f vertices, thus we have L =
i=1 [ x(-1)-® and ®;; = 1,Vi # j. X = [x(V,x@ _ x(I9)],
(L < . ) _ () () (i)7. qq( _ 1a(1) (2 Q ) _
o8 3, KLipllp) WO+ A pwo 0 =0 T HE) = [60,6%, ., g120], 0 =

= FE2 ), i ), i) )]
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Networks

Algorithm 1: Clique Embedding of NETWALK
Input: Network walk set €.

; o ()
l _o(8) {p(E=1) T (£) Output: Network representations f 2 (x,,")
n> 2° vw'{ﬁ J(W, b) =6 (f (X)) + AW, Set latent dimension d, sparsity p, weight control parameters y, f§ and
€2 A.
i  mys s “‘) “_r“} ny
Vh{F}J(W, b) = Z (35 }. Randomly initialize {W b }le'
=1 Construct input vector xj;} e R" forvertex pinwalk i, 1 < p <,
1<i<|Q
else: while not stopping criterion do
o Perform a feedforward pass to compute £ (Xi:}).
; ; ; i T For the output layer ny, set §("1) using Eq.(8)
R cos TN B = O+ LT (1) 5 (1 — F (-1 (x p yer ny., g £q
w(©) J(W, b) Zl”f" ( Yo FHo(l=F )(f ( )) PR R il o Y
e _ _ _l_ _ Compute “error terms” & (£) using Eq.(9).
o 51 (fu'—l}(x)) + AW, if £ > =L then
il Compute partial derivatives V() J(W, b) and
Vo JW.b) =) FOL+LT)o FDo-FD)+5Y. L Vi@ J (W, b) using Eq.(10)-(11).
i=1 else

Compute partial derivatives V) J(W, b) and
Vo J(W, b) using Eq.(12)-(13).

Determine the step size & by line search.

Update W) = W9 — &V ) J(W, b).

Update b(©) = p(6) — EViey J(W, b).

Compute embedding results fTI (xg}).




NetWalk: A Flexible Deep Embedding Approach for Anomaly Detection in Dynamic

Networks

Edge Encoding:

(v, u), the edge representation should be the same. In this paper, we
use the Hadamard operator which has shown good performance in
edge encoding [15]. Assume that the d-dimensional representation
learned by Algorithm 1 for vertex v is f(v), then the representation
of each edge (v, u) under Hadamard operator is [ f(v) o f(u)]; =
fi(v) X fi(u). It is worth mentioning that the way to encode edges
is very flexible. We can add any additional edge-specific features to
augment the edge vector.
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Maintaining Network Representations Incrementally(ZbF 45 5 R34 ) B8 %) -

| ¥ .
7 2 7 2 7 2
LT S oo H N o i
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8 (4) 8 4 8) (4)
D )3 D ©3®@) [TXBIOIC
@ OGO @ GG @ GG
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Timestamp ¢, Timestamp ¢, . ~ Timestamp ts

Figure 4: [llustration of updating the reservoirs. Initially we
build the reservoir of each vertex based on the network at
t1. When (v2,v3) is added at timestamp ty, the correspond-
ing reservoirs of v2 and v3 will be updated. Similarly, when
(v1,v4) is deleted at timestamp f3, we replace the deleted
items with the remaining neighbors of the corresponding

vertex.

as new edges arrive. The updating rules are described as follows

for each newly added edge (u,v):

(1) update the degree of vertices u and v: Dy, ,, = Dy 4 + 1,
Dyv =Dypov+1;

(2) for each item in the reservoir S, with probability Dl_ ,

replace the old item with the new item v; and with probability

1- D_}m , keep the old item;

(3) for each item in the reservoir S;, with probability

1
Dy o>

replace the old item with the new item u; and with probability
1- D#’ keep the old item.

o, v

In case where edges are deleted, the reservoir is chosen
similarly to aforementioned rules.
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ANOMALY DETECTION

When new edges stream in, we need to update cluster centers
accordingly. In this paper, we leverage the streaming k-means clus-
tering [4] which uses parameters to control the decay of estimates.

in our model, we find the closest cluster to each point. We use the
Euclidean distance as the similarity measure, given by ||c — f(-)|l2,
where c is the cluster center and f(-) is the learned representa-
tion for each vertex or edge. The anomaly score for each point is
reported as its closest distance to any cluster centers.

Assuming that there are ny points {Jf,-}:.l:':'1 in an existing cluster

and n’ new points {x;}?;l at time-stamp T’ to be absorbed by this

cluster, the centroid ¢ can be updated in the following way

acong + (1 — a) {,_: x5
¢.= Lizy L, (15)
ang+ (1 —a)n’

where ¢ is the previous cluster center. The decay factor « is chosen
as 0.5 and used to ignore older instances, which is analogous to an
exponentially-weighted moving average.
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Networks

On the weighted networks

First, since the walks generating step adopts random
walker technique, it is easy to consider the weights of
edges into the transition probability.

Accordingly, in Eq.(4), additional weights should be put
to the pairwise loss of two vertices.

1]

Toige=2, ¥, [Fah-#rtad)

i=11<p, gl
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Cash-Out User Detection Based on Attributed Heterogeneous Information Network with a

Hierarchical Attention Mechanism

Motivation:

g MBI 17 e @58 2K nE, AR5 F LiiE K
oI FESRHE. SRMAESEPRI sedh P 2 A EFEE R B R AR,
XA BN T RINEDH P 2 F BB .
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Hierarchical Attention Mechanism

Attributed Heterogeneous Information Network (AHIN)

\Users Frmmp =% Network Schema

Fund Transfer Fund Transfer

Definition 2 Meta-path (Sun et al. 2011). A meta-path p is

. R. R. R
defined as a path in the form of Ay, — Ay — .- —5

Ajy1 (abbreviated as A1As --- Ayjyq), which describes a
composite relation R = R o Ry 0 --- o R} between object
Ay and A; 1, where o denotes the composition operator on
relations.

i S e

[ Merchants,
| ]

]

1
I
I
I
1
|
I
I
]
I
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I
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| | Merchant! |
]
]
I
I
I
I
|
]
I
I
]
I

Meta-paths

UMU Definition 3 Meta-path based Neighbors. Giving a user u

'M‘”"f“m“ in an AHIN, the meta-path based neighbors is defined as the
set of aggregate neighbors under the given meta-path for the
uu . '
user u in the AHIN.

Fund Transfer
User

(a) Scenario of credit payment ser- (b) Network schema and
vice meta-path examples
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User Features
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Cash-Out User Detection Based on Attributed Heterogeneous Information Network with a

L — E anP . sk 3 -
Xu = u"-u,_'j g

JENG

where N is thie neighbors of node j based on meta-path p
and x; represents the attribute information vector associated
with ncde j. The given link weight w,,; > 0 for weighted

networks and w,,; = 1 for unweighted networks.

h, = Wx, +b, h?=WPrx? + b¥

Features of Path py

based Neighbors
= (Wirg(hy, hf) + bf)
£/ = ReLU(W%g(h,, h?) + b’
B, O 2(-, -) 1s the fusion function, which can be concatenation, addition
based Neighbors

or element-wise product.

“a p
) hife
Pn y
X.t y :
L]

Meta-Path based

Neighbors Aggregation Feature Fusion



Cash-Out User Detection Based on Attributed Heterogeneous Information Network with a
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Feature Attention:
vf = ReLU(W([h,;f?]+ b}),
af = ReLU(W%vf + b%),
! : - exp(a’ .)
' i T K ;
> exp(al )
f=al O
Path Attention:
T oC
By = exp(z? " - f9)

2 pep exp(z’'" - £0)

" E , P
E-u H .*:?-u.p * f::-,

pEP

1sion P Hierarchical Attention Mechanism ; Prediction



Cash-Out User Detection Based on Attributed Heterogeneous Information Network with a
Hierarchical Attention Mechanism

Model Learning:

z, = ReLU(W, - --ReLU(We, + b;) + by

= sigmuid(wgzu + by).

Optimization:

LO) = ) (yulog(pa)+ (1 —yu)log(l —pu))
(1,0u) €D

+All©]fz, (12)

Prediction
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Information Network Embedding Framework
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Meta-Path:
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Feature Extractor & Key Player
AHIN Constructor Player2Vec I entiﬁVer
e TEEEEEEEEEEEsEsEEsEsEnEREnnnn, . _— — e e e e e e - \

II Single-view
|

; _____________ : attributed graph
- l - A

i1 User - Attr | E 8 .................................. > ° o
i) =N(E ool 2
H : o

------

______

______

I

1

I

I

I

I

® i ___.l coe |
' I
I

I

I

I

__4£t_r_, \ a—a ) ) — User Representation
Meta-paths . Multi-View Network

Single-View Attributed Graph Embedding with GCN:

» £k = GON(X, A¥) = Ak ReLU (4k X wk-0)wk:1

oA
%‘2

£k — Ak (ReLU.. ReLU (AF X Wk:0)_wk-L=2yyk.I-1)

...................................




Key Player Identification in Underground Forums over Attributed Heterogeneous

Information Network Embedding Framework

Feature Extractor & Key Player
AHIN Constructor Player2Vec I entiﬁtzr
e s s e s . — — e e e o e e - \

{ Single-view

¢ J— : I attributed graph
- l . A

1 User - Attr | . Pl (O =1 s B @ 1., ®

A S 7 E @ é E J—— 1] 0 /™ e

. tAttr P

H : .

x4

! At ‘\if. -
\ 7
[ 3

______

DA
%‘2

______

; 'y .
& @ ) User Representation

J‘L{t_r_- /J
Meta-paths Multi-View Network R

Multi-View Network Embedding with Attention:

o2 Finally, we feed user embeddings to
exp(zk™ - £5) Support Vector Machine (SVM) to
T £C build the classification model for
2k ek exp(z© - f}) k S
ey player identification. In the
experiments, we randomly select
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Figure 2: An overview on Deep Autoencoding Gaussian Mixture Model

% = (0.); x = g(2z¢; 04q),
Zy = f(xt Xf)?

Z = [Z(:*. z-r]*
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Objective function:

1
’I(H( 6'1.’}.’- 9?;1) = ?
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The sample energy:

1 A \T$—1 s %
exp —5(z = jig)" 2 (2 = fig)
—log Z@’m - - .
\ 272 |

where we estimate the parameters in GMM as follows:

E(z) =

Gaussian Mixture Model (GMM)

y = softmax(z), 95;( = Z Fik
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